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Abstract---The security of user applications largely relies on the
proper execution of the underlying operating system. However,
existing commodity OSes are inevitably vulnerable due to their
enormous code base containing a whole bunch of bugs that can
be easily exploited by attackers. In such situations, a proper
way of protecting users' data privacy and integrity at runtime
is a paramount task that needs efficient solutions. While quite
some efforts, such as Overshadow, SP3, InkTag, and AppShield,
have been made to deal with this problem, existing solutions
either induce non-trivial performance overhead, or demand
modifications to the OS, applications, or the underlying hardware
architecture.

In this paper, we present AppGuard that can efficiently
and feasibly protect user applications even on a compromised
OS. AppGuard utilizes the hardware virtualization extensions
to achieve such a goal. Compared to the existing solutions,
AppGuard does not require any modifications to the application
or the OS. Our evaluation results demonstrate that AppGuard
can provide effective protection to user applications with much
lower performance overhead.

I. Introduction

Commodity operating systems are always vulnerable to
various attacks due to their large code base. This has con-
tinuously raised concerns on the user applications's security
and privacy running on these OSes. The problem is getting
worse today and protecting user applications from untrusted
OS has become one of the most crucial tasks.
Quite some efforts have attempted to provide secure protec-

tion for user applications [1], [2], [3], [4]. In Overshadow [1]
and SP3 [3], the hypervisor presents an encrypted view of the
application's memory to the OS, thus preventing the OS from
accessing the plaintext of the user memory. However, complex
encryption and decryption operations dramatically degrade the
performance of the whole system. InkTag [2] not only protects
the application data but also verifies the OS behaviors through
paraverification technique but it requires to modify the the
kernel, making this approach impractical for commodity OSes.
Proxos [4] introduces a dedicated trusted virtual machine for
the protected applications. However it dramatically increases
the TCB size and therefore weakens its security strengths
and XOM OS requires hardware modifications which appear
impractical for commodity platforms.

In short, these existing solutions fail in one or several of
the following aspects: (i) requring changes on either the ap-
plications, the operating systems or the hardware architectural
support, (ii) heavy computation overhead on frequent encryp-
tion and decryption operations, (iii) only checking system call
from possible malicious access from untrusted OSes while
overlooking the dynamic library which may contain malicious
code.
To best address these concerns, we propose a novel archi-

tecture AppGuard, we design and implement AppGuard to
protect user applications running on untrusted OS. AppGuard
does not require any modifications to the application or the
underlying OS. It also significantly reduces the performance
overhead by utilizing the hardware virtualization support (e.g.,
Intel VT-x and AMD-V provided by the Intel and AMD).
AppGuard protects applications context and address space
from the OS kernel and other applications by interposing
on the interactions between the user applications and guest
kernel, such as faults, interrupts, and systems calls. Moreover,
in AppGuard, encryption and decryption operations are only
needed to perform on I/O data to ensure the confidentiality
and integrity of users' data. To evaluate the performance of
AppGuard, we implement a prototype and compare it against
existing solutions. The results show that AppGuard provides
more protection with much less performance overhead. While
details are presented later in the paper, the highlights of
AppGuard includes the following:

• AppGuard is easily portable since it does not require any
changes on the applications or OS. Thus it preserves the
same OS interface to retain backward compatibility for
existing applications.

• In AppGuard, the encryption and decryption operations
are only performed on I/O data to ensure the confiden-
tiality and integrity of users' data. The minimum usage
of such operations dramatically reduces the overhead.

• AppGuard checks both system call and library to prevent
malicious access from untrusted OSes.

The rest of this paper is organized as follows. In Section II,
we discuss related work on protecting user applications from
untrusted OSes. Section III presents the threat model along
with a general description of our overall architecture. Sec-
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tion IV devotes to implementation details of AppGuard, con-
sisting of application memory protection, event interception
mechanisms, I/O data protection and so on. Some evaluation
results are presented in Section V. Section VI discusses the
future work and concludes this paper.

II. Related Work

In this section, we discuss in more details on the existing
approaches related to application protection in untrusted com-
puting environments.
Hypervisor based protection. A lot of previous efforts pro-

tecting the secrecy and integrity of user's application against
untrusted operating system take a VMM-based approach. The
most related work to AppGuard includes Overshadow [1], SP3
[3], InkTag [2], AppShield [5].
In Overshadow [1] and SP3 [3], to protect the user ap-

plications' security and privacy, the hypervisor presents an
encrypted view of the applications' memory to the OS. But
encryption and decryption are time consuming, which dra-
matically degrades the performance of the entire system.
AppGuard does not suffer from this drawback by utilizing
EPT (Extend Page Table) provided by hardware virtualization
extensions. In addition, marshalling code at the user level in
Overshadow could be exploited by the attacker. In AppGuard,
all code is inside the hypervisor, which provides more strict
protection. InkTag [2] verifies the OS behaviors through
a new paraverification technique. It effectively secures the
application from Iago attacks. However, it requires kernel
modifications which is not practical to commodity operating
systems. Unlike InkTag, AppGuard requires no changes to the
OS or applications.
AppShield [5], the most similar work to ours, claims that it

does not need any cryptographic operation by EPT reconfigu-
ration. However, it does not explain how OS performs disk I/O
operations, such as memory page swap in/out, without access-
ing the application. Just relying on EPT configuration, OS will
crush if it cannot access the application. Moveover, Appshield
requires a trusted component in the guest kernel. AppGuard
differs from Appshield in (1) although both AppGuard and
Appshield use EPT configurations to isolate the application
from the OS, AppGuard allows the OS to access the encrypted
applications' memory page in order to support normal disk I/O
operations; (2) AppGuard does not require any modifications
to the application or the OS, while Appshield needs a trusted
component in the guest kernel; 3) AppGuard directly traps the
events that need to be intercepted without going through the
guest kernel as in AppShield, thus not relying on any trusted
components of the guest OS. This makes AppGuard backward
compatiable.
Secure processor based protection. A secure process is a

dedicated process with hardware implementation for carrying
out cryptographic operations. It can directly protect individual
process bypassing the whole or most of OS. XOM OS [6]
provides compartments to isolate one application from the
others. However, XOM OS requires hardware modifications
and heavy compiler/assembler support that appears impractical
for commodity platforms. SecureME [7] and Bastion [8] both

use secure processors to deal with untrusted OS and hardware.
Bastion is a new hardware-software architecture for protecting
security-critical software modules. It is composed of enhanced
microprocessor hardware and enhanced hypervisor software.
SecureME is also a hardware-software approach to provide
protection on application code and data. It requires modifica-
tions to the OS and applications. AppGuard is different from
above as it does not require any modification to hardware, OS
or application.
Some other related work, e.g., Flicker [9], TrustVisor [10],

and Memoir [11] protects a small piece of code and data rather
than a whole application or device drivers that requires OS
functionality. The negative impact of TCB size on system
security has been widely recognized.
AppGuard differs from these existing work because App-

Guard does not require any modifications to the application
or the guest OS. Furthermore, AppGuard not only protects
the user application by interposing on the control transfer
between the user process and the guest kernel upon system
call invocation and interrupt handling, but also considers the
potential privacy leakage during shared library calls. Finally,
AppGuard takes a cryptographic approach only in system call
based I/O and paging related I/O to ensure both the privacy
and the integrity of the data, and the performance.

III. Overview
A. Threat Model
In our work, the OS is assumed to be untrustworthy since

it is vulnerable to attacks due to its large code base, which
consists of not only the kernel but also device drivers and
system services. The large body of code exposes broad attack
surfaces to attackers. The sensitive data of users' application
will be easily tampered with once any part of the OS gets com-
promised. We don't consider the protection of its availability
in this paper.
Compared to a commodity OS, the underlying hypervisor

normally has a much smaller and simpler code base. In our
work, we assume that the hypervisor is trustworthy and its
integrity can be ensured by utilizing TPM (Trusted Platform
Module) from the Trusted Computing Group (TCG). Besides,
System Management Mode based attacks are out of the scope
of our consideration.
We also assume that the underlying hardware, i.e, CPU,

cache, memory are all trustworthy except for peripheral I/O
devices since they are vulnerable to exposure. To prevent the
privacy leakage from I/O devices, we adopt crypto to ensure
the privacy and integrity of all I/O data.

B. Design Goal
The aim of AppGuard is to provide a secure execution

environment which protects the integrity and data privacy
against a compromised OS for critical user applications. This
goal is the same as some previous work, such as Overshadow
and AppShield..
Address space isolation. To fully protect the privacy and

integrity for code and data in the application's address space,
we must impose strict isolation between the address space
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of the application and the guest kernel. This is achieved by
utilizing hardware assisted virtualization support for memory
virtualization instead of repetitively encrypting and decrypting
the pages.. Any access to the application address space from
the guest kernel will be intercepted and handled by AppGuard.
Control flow integrity. Even though the address space

of applications is strictly isolated, an application still needs
to interact with the OS for system call handling, fault and
interrupt handling. To ensure control flow integrity, AppGuard
interposes on every context switch to prevent the application
from being tampered with. The kernel cannot make any
changes of the application code, thus, the control flow integrity
of the application will be assured.
Disk I/O and paging related memory protection. Differ-

ent from memory isolation, disk I/O data and swap pages need
to be encrypted since the disk is shared among processes and
vulnerable to attacks. This is achieved by encrypting the user
pages upon EPT violation when the kernel attempts to access
the application's memory.
Unmodified application and OS. In this paper, we aim to

provide a novel system that doesn't require any modification to
the user application or the OS, which makes the key difference
from the previous work. This novelty simplifies the system to
the largest extent but still manages to enforce full protection
of all the security sensitive applications.

C. Overall Architecture
Figure 1 shows the overall architecture of AppGuard. It

consists of an untrusted OS, user application, a bare-metal
hypervisor and a shared buffer in the user space.
To avoid any change to the application or OS, we modify

the hypervisor by adding three components for the following
functions: (a) Context protection: protect the application con-
text during the switch between the user and the kernel mode;
(b) Parameter marshalling: assemble the arguments that need
to be passed to the kernel. (c) EPT reconfiguration: configure
EPT entries in order to isolate the address space between the
application and the guest kernel. Therefore, the application
address space will be inaccessible to the kernel. The shared
buffer, which is also accessible to OS, stores all the marshalled
arguments that need to be passed to the kernel for normal event
handling. AppGuard follows the following four steps to handle
the interrupt and system call.
1) Any flow control from the user application to the

untrusted kernel traps to the hypervisor due to different
interception mechanism based on what type of event
is occuring, e. g, system call, interrupt, shared library
function invocation.

2) The hypervisor saves the user context, marshals the
required parameters, marks the corresponding EPT en-
tries of the user process as inaccessible and injects the
interrupt into the kernel or transfers control to the shared
library.

3) After the guest OS handles the forwarded system call or
interrupt, it transfers controls to the untrusted code block
that again issues another hypercall into the hypervisor or
triggers an EPT violation after execution of the shared
library function.
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Fig. 1: The architecture of AppGuard for handling system
calls/interrupts.

4) The hypervisor restores the original contexts of the
interrupted process and returns control to the user ap-
plication.

At first glance, the architecture in Figure 1 looks similar
to that of AppShield. However, AppGuard differs from App-
Shield significantly. The largest difference lies in the fact
that the system call or interrupt is intercepted directly by
the hypervisor. Importantly, AppGuard does not require any
modifications to the commodity OS which makes it easily
portable.

IV. Implementation
In this section, we describe the detailed design of App-

Guard. We mainly focus on how it isolates the address
space of user applications from the OS, and the interception
mechanisms for system calls, interrupts and library function
calls in order to protect the privacy and integrity of users data.

A. Application memory protection
Figure 2 depicts the basic state transition diagram for main-

taining the secrecy and integrity of a single protected memory
page. In the figure, RA/WA represents read/write operation
on the accessible plaintext, and RK/WK represents read/write
operation on encrypted data. The detailed procedures of the
state transition are as follows:

• Transition 1: When a system call is invoked or an
interrupt occurs, the hypervisor intercepts the event and
marks the EPT entries of the corresponding application
as inaccessible and forwards the events to the kernel.

• Transition 2: On return to the user process, the hypervisor
restores the bits in the EPT entries to their original
state and the application can perform read/write (RA/WA)
operations.

• Transition 3: When the kernel tries to read or write the
application pages for disk I/O, the hypervisor intercepts
this operation based on EPT violation, encrypts the I/O
data, sets those entries as inaccessible.
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Fig. 2: State transition diagram for maintaining the secrecy
and integrity of single memory page of user application.

• Transition 4: When the encrypted page is subsequently
accessed by the application, the hypervisor decrypts it
and sets the corresponding EPT entry as accessible.

B. System Call Handling
The general procedure for handling a system call consists

of several steps as described below:
1) Any system call, interrupt or shared library function call

causes VMEXIT and is intercepted by the hypervisor.
2) The hypervisor will (1) marshal the parameters required

by the system call handler into the shared buffer; (2)
save the contexts of the trapped process and prepare
dummy context in VMCS; (3) set the EPT entries cor-
responding to the guest memory as inaccessible except
for the shared buffer and inject the event into the guest
kernel. The shared buffer is used for communication
between the application and the kernel.

3) Return control to the untrusted code block in the user
address space which again issues a hypercall into the
hypervisor.

4) The hypervisor restores the original EPT configuration
and the original context (GP registers, flag registers,
control registers).

C. Library call handling
Another potential security issue is from the shared libraries

that are linked to the running program at runtime, which
may contain malicious code intending to tamper with users'
privacy [12]. Some of the library functions are implemented
by invoking the system calls provided by the kernel. Therefore,
to prevent them from accessing the sensitive information of
the application, we need to intercept the user space library
calls in the hypervisor before the system calls are invoked.
The difference from the system call handling is that we
don't need to re-exit for system calls embedded inside library
functions. For performance, we need to design a mechanism
that prevents re-entry for system calls in library functions.
The detailed mechanism for intercepting and handling shared
library function calls will be discussed in our future work.

D. Parameters Mashalling
One critical component of AppGuard is parameters mar-

shalling that exports the data needed by the system call routine
into a shared buffer. The arguments inside the shared buffer
will be used to maintain the normal execution of the system
call.
On VMEXIT, in order to prevent the kernel from accessing

registers since they may contain sensitive application data, the
hypervisor saves these registers in a private section in its own
address space and creates some dummy context. However,
there are still some system calls that place their parameters in
some of these general purpose registers. To ensure the correct
execution of the system call service, AppGuard keeps those
parameters in the corresponding registers.

E. I/O protection through encryption
As we assume that the disk and the OS are not trustworthy,

we use a cryptographic approach which supports system call
based I/O and paging related I/O to ensure both the privacy
and the integrity of the data.
Disk I/O protection: As mentioned earlier, all system calls,

including system call based I/O, such as read() and write(), are
intercepted by the hypervisor. It will encrypt the I/O data that
needs to be passed to the untrusted kernel.
Paging related memory protection: For paging related

I/O, since before VMENTRY, the EPT entries corresponding
to the target application have already been marked as inac-
cessible to the guest kernel, it triggers an EPT violation when
the guest tries to access the user's memory. The hypervisor
encrypts the required memory and marks those entries as
accessible and returns control to the guest VM and resumes
the operation. For instance, if a page is to be swapped out,
the hypervisor intercepts this operation based on the EPT
violation, encrypts the page and swaps it out. When the page
is swapped in from the disk later on, the hypervisor decrypts
this page and hands it over to the application.
Overshadow [1] encrypts/decrypts the application memory

at the occurrence of every context switch between the user
mode and the kernel mode. This dramatically degrades the
performance of the entire system due to the costly encryp-
tion/decryption operations. However, AppGuard just needs
to encrypt/decrypt the pages for I/O operations. For normal
interrupts or system calls, there is no need to encrypt these
pages since we already set these EPT entries as inaccessible
previously.

V. Evaluation
A. Comparison with Existing Approaches
Our design differs from other existing approaches in a

number of different ways, which are summerized in Table I. Y
means that encryption is needed for that particular event while
N means that encryption/decryption is not needed during the
process. From this table, we can find that Overshadow requires
encryption or decryption operations at every context switch
between the application and the guest OS while AppGuard
only needs to reconfigure the corresponding EPT entries utiliz-
ing hardware virtualization extensions. Encryption/decryption
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TABLE I: Comparison of different approaches.

Events AppGuard AppShield Overshadow InkTag
Interrupt N N Y N
Exception N N Y N
System Call N N Y N
I/O Protection Y N Y Y
OS modification N Y N Y

operations are only needed for I/O data since the external disk
is considered to be untrusted which dramatically reduces the
performance overhead compared to Overshadow. Hence, App-
Guard outperforms Overshadow in terms of time overhead,
which is especially important for time critical applications.
As we have mentioned, AppShield is the most similar work
to AppGuard. However, it requires a trusted component called
transit module to be inserted into the guest OS. To some extent,
this contradicts with its threat model that assumes the guest
OS is totally untrusted. In our assumption, we assume that
every component of the guest OS is considered untrusted.
Furthermore, AppGuard doesn't consider the threat of shared
library calls that may contain malicious code while AppGuard
effectively solves this problem.
To evaluate the AppGuard performance, we focus on mea-

suring the overhead of the most time consuming part of our
design, which is the encryption and decryption operations on
disk I/O data. Here, the first step we take is to calculate the
time spent on encrypting or decrypting a single memory page.
The algorithm that we use to encrypt the data is AES-256 and
it gives an approximate time of 0.018s for a single page. As the
second step, we collect some statistical data that indicates the
number of page faults during the execution of a common user
application. Table II shows us the approximate amount of page
in and page out operations for "make". Each row represents
the average pagein/pageout/pagefault per second for a period
of 10 minutes.

TABLE II: Statistics of memory performance during Make.

index pgpgin/s pgpgout/s fault/s
1 0.53 1126.84 55261.73
2 0.00 1113.98 54656.57
3 0.00 1117.48 54539.20
4 0.00 1120.52 54585.74
5 0.00 1119.51 55062.79
6 0.00 1122.01 54855.17
7 373.20 1227.23 55372.35
8 0.01 1140.76 56154.34
9 0.01 1134.49 56647.55
10 0.01 1133.95 56578.40

In this table, pgpgin/s represents the total number of kilo-
bytes the system paged in from the disk per second while
pgpgout/s represents the total number of kilobytes the system
paged out to the disk per second. As shown in the table, in
our case, the number of pgpgout/s is 1135.7 KB/s on average.
Also, we use strace to keep track of the system calls that are
called during the "make" process. The total number we get
is 3193 which is much larger than the number of swapping
between the memory and the disk. Overshadow needs to
encrypt/decrypt the application memory every time a system

call is invoked while AppGuard only needs to do this for I/O
data which reduces the time overhead of the entire system.

VI. Conclusion
In this paper, we present a novel system, named AppGuard,

which can effectively isolate the user applications from un-
trusted OSes while allowing applications to make full use of
the OS services. AppGuard utilizes hardware virtualization
support provided by Intel VT and AMD-V and meanwhile,
without requiring any modifications to the user applications
or the OS. This makes AppGuard backward compatible. In
our future work, we will implement a prototype of AppGuard
and evaluate our system by testing out a suite of micro and
macro benchmarks and analyze the performance of AppGuard
in more details.
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